Los trabajos prácticos y el desempeño de los estudiantes: una revisión sistemática de literatura
DOI:
https://doi.org/10.51247/st.v7i2.416Palabras clave:
Trabajo práctico, Desempeño, Estudiantes, Laboratorio, MotivaciónResumen
Los trabajos prácticos han sido fuente inagotable de investigación en el campo de la didáctica de las ciencias. Dada su importancia y la incidencia en los desempeños de los estudiantes, se hace necesario desarrollar una revisión sistemática de la literatura, con el objetivo de identificar las relaciones entre estas dos variables (trabajos prácticos y desempeño de los estudiantes). Se utilizó la metodología PRISMA, así como los métodos: revisión documental y hermenéutico. Se exploraron las bases de datos Scopus y Web of Science, de donde se seleccionaron 33 publicaciones, en las que las que emergieron tres categorías principales: construcción de conocimientos, desarrollo de habilidades y cambios de actitud en los estudiantes. Los resultados obtenidos sugieren la importancia de la implementación de trabajos prácticos al favorecer en el desempeño de los estudiantes estas tres categorías; además, favorecen la generación de alternativas de evaluación, específicamente formativa para mejorar los procesos de aprendizaje. Los trabajos prácticos mediados por tecnologías de la información y la comunicación ofrecen un potencial significativo en los aprendizajes, desarrollo de habilidades y mejora en las actitudes de los estudiantes.
Descargas
Citas
Akuma, F. V. y Callaghan, R. (2019). Teaching practices linked to the implementation of inquiry-based practical work in certain science classrooms. Journal of Research in Science Teaching, 56(1), 64–90. https://doi.org/10.1002/tea.21469
Alegre Buj, M. y Cuetos Revuelta, M. (2020). Use of sensors and automatic data collection equipment in the practical work of Physics and Chemistry of middle and high school: The Arduino platform. Revista Eureka, 18(1). https://doi.org/10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2021.V18.I1.1202
Alneyadi, S. S. (2019). Virtual lab implementation in science literacy: Emirati science teachers’ perspectives. Eurasia Journal of Mathematics, Science and Technology Education, 15(12). https://doi.org/10.29333/ejmste/109285
Álvarez Herrero, J. y Valls Bautista, C. (2019). The use of contextualization through experimental demonstrations to improve the future teachers’ perception and attitude towards Chemistry. Ensenanza de Las Ciencias, 37(3), 73–88. https://doi.org/10.5565/rev/ensciencias.2674
Awad, N. (2021). Exploring STEM integration: assessing the effectiveness of an interdisciplinary informal program in fostering students’ performance and inspiration. Research in Science and Technological Education. https://doi.org/10.1080/02635143.2021.1931832
Baladoh, S. M., Elgamal, A. F. y Abas, H. A. (2017). Virtual lab to develop achievement in electronic circuits for hearing-impaired students. Education and Information Technologies, 22(5), 2071–2085. https://doi.org/10.1007/s10639-016-9532-7
Blanco Anaya, P. y De Bustamante, J. D. (2017). Análisis del nivel de desempeño para la explicación de fenómenos de forma científica en una actividad de modelización. Revista Eureka, 14(3), 505–520. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i3.01
Boyle, J. (2019a). Teaching gravitational waves in the lower secondary school. Part I. A teaching module. Physics Education, 54(2). https://doi.org/10.1088/1361-6552/aaf779
Boyle, J. (2019b). Teaching gravitational waves in the lower secondary school. Part II. A model for a STEM enrichment programme. Physics Education, 54(2). https://doi.org/10.1088/1361-6552/aaf76e
Boyle, J. (2019c). Teaching gravitational waves in the lower secondary school. Part III. Monitoring the effect of a STEM intervention on students’ attitude, self-efficacy and achievement. Physics Education, 54(2). https://doi.org/10.1088/1361-6552/aaf771
Chen, X. y Eilks, I. (2019). An Analysis of the Representation of Practical Work in Secondary Chemistry Textbooks from Different Chinese Communities. Science Education International, 30(4), 354–363. https://doi.org/10.33828/sei.v30.i4.13
Chu, W. W., Ong, E. T., Ayop, S. K., Mohd Azmi, M. S., Abdullah, A. S., Abd Karim, N. S., y Tho, S. W. (2021). The innovative use of smartphone for sound STEM practical kit: a pilot implementation for secondary classroom. Research in Science and Technological Education. https://doi.org/10.1080/02635143.2021.1978963
Crujeiras Pérez, B. y Jiménez Aleixandre, M. (2015). Analysis of high school students’ scientific competency: Answers and justifications to PISA items. Revista Eureka, 12(3), 385–401. https://doi.org/10.25267/rev_eureka_ensen_divulg_cienc.2015.v12.i3.01
Fadzil, H. M. y Saat, R. M. (2020). Exploring secondary school biology teachers’ competency in practical work. JPII, 9(1), 117–124. https://doi.org/10.15294/jpii.v9i1
Fung, C. H. (2020). How Does Flipping Classroom Foster the STEM Education: A Case Study of the FPD Model. Technology, Knowledge and Learning, 25(3), 479–507. https://doi.org/10.1007/s10758-020-09443-9
Gallego, R., Gómez Ochoa de Alda, J. y Marcos Merino, J. (2019). Extracción de ADN con material cotidiano: diseño, implementación y validación de una intervención activa interdisciplinar. Educación Química, 30(1), 42. https://doi.org/10.22201/fq.18708404e.2019.1.67658
Gericke, N., Högström, P. y Wallin, J. (2022). A systematic review of research on laboratory work in secondary school. Studies in Science Education, 00(00), 1–41. https://doi.org/10.1080/03057267.2022.2090125
Ghani, I. B., Ibrahim, N. H., Yahaya, N. A. y Surif, J. (2017). Enhancing students’ HOTS in laboratory educational activity by using concept map as an alternative assessment tool. Chemistry Education Research and Practice, 18(4), 849–874. https://doi.org/10.1039/c7rp00120g
Girotto Junior, G., Cachichi, R. C., Galembeck, E. y Anto, P. (2022). Analysis of pre-service and in-service teachers’ perceptions about practical activities involving remote laboratory. Góndola , Enseñanza y Aprendizaje de Las Ciencias, 17(2), 300–316.
Gumilar, S. y Ismail, A. (2021). The representation of laboratory activities in Indonesian physics textbooks: a content analysis. Research in Science and Technological Education. https://doi.org/10.1080/02635143.2021.1928045
Hernández Serrano, M. y Muñoz Rodríguez, J. (2020). Interest in STEM disciplines and teaching methodologies. Perception of secondary school students and preservice teachers. Educar, 56(2), 369–386. https://doi.org/10.5565/REV/EDUCAR.1065
Hernández, M. Á., Benítez Pérez, M. y Alicia, A. (2018). La enseñanza de las ciencias experimentales a partir del conocimiento pedagógico de contenido. Instituto Politécnico Nacional, 18, 141–163.
Hernández, M., Antonio, D. M., Guevara, V. y Morales, R. (2019). Virtual reality laboratories : a review of experiences. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(3), 947–966. https://doi.org/10.1007/s12008-019-00558-7
Hofstein, A., Dkeidek, I., Katchevitch, D., Nahum, T. L., Kipnis, M., Navon, O., Shore, R., Taitelbaum, D. y Mamlok Naaman, R. (2019). Research on and Development of Inquiry-Type Chemistry Laboratories in Israel. Israel Journal of Chemistry, 59(6), 514–523. https://doi.org/10.1002/ijch.201800056
Itzek Greulich, H. y Vollmer, C. (2017). Emotional and motivational outcomes of lab work in the secondary intermediate track: The contribution of a science center outreach lab. Journal of Research in Science Teaching, 54(1), 3–28. https://doi.org/10.1002/tea.21334
Kichukova, K. S. y Taneva, T. G. (2021). Achievement Motivation and Attitude of Medical Laboratory Assistants to Continuing Education. Obrazovanie i Nauka, 23(6), 185–215. https://doi.org/10.17853/1994-5639-2021-6-185-215
Kizilaslan, A., Zorluoglu, S. L. y Sozbilir, M. (2021). Improve learning with hands-on classroom activities: science instruction for students with visual impairments. European Journal of Special Needs Education, 36(3), 371–392. https://doi.org/10.1080/08856257.2020.1732110
Kurtulmus Yilmaz, S. y Önöral, Ö. (2022). Effectiveness of screen-to-screen and face-to-face learning modalities in dental anatomy module during Covid-19 pandemic. Anatomical Sciences Education, 15(1), 57–66. https://doi.org/10.1002/ase.2150
Lal, S., Lucey, A. D., Lindsay, E. D., Sarukkalige, P. R., Mocerino, M., Treagust, D. F. y Zadnik, M. G. (2017). An alternative approach to student assessment for engineering–laboratory learning. Australasian Journal of Engineering Education, 22(2), 81–94. https://doi.org/10.1080/22054952.2018.1435202
Lal, S., Lucey, A. D., Lindsay, E. D., Treagust, D. F., Mocerino, M. y Zadnik, M. G. (2020). Perceptions of the relative importance of student interactions for the attainment of engineering laboratory-learning outcomes. Australasian Journal of Engineering Education, 25(2), 155–164. https://doi.org/10.1080/22054952.2020.1860363
Lee, C., Asher, S. R., Chutinan, S., Gallucci, G. O. y Ohyama, H. (2017). The Relationship Between Dental Students' Assessment Ability and Preclinical and Academic Performance in Operative Dentistry. J Dent Educ.,81(3), 310-317.
Li, L., Song, C., Ma, Y. y Zou, Y. (2022). “Half-wet-half-dry”: an innovation in undergraduate laboratory classes to generate transgenic mouse models using CRISPR/Cas9 and computer simulation. Journal of Biological Education. https://doi.org/10.1080/00219266.2021.2011770
Lin, T. J. y Tsai, C. C. (2018). Differentiating the Sources of Taiwanese High School Students’ Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences. Research in Science Education, 48(3), 575–596. https://doi.org/10.1007/s11165-016-9579-x
Marín González, F., Cabas, L. de J., Cabas, L. C. y Paredes Chacín, A. J. (2018). Formación Integral en Profesionales de la Ingeniería. Análisis en el Plano de la Calidad Educativa. Formación Universitaria, 11(1), 13–24. https://doi.org/10.4067/s0718-50062018000100013
Mengist, W., Soromessa, T. y Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. In: Elsevier B. V., Science of the Total Environment Vol. 702. https://doi.org/10.1016/j.scitotenv.2019.134581
Nainggolan, B., Hutabarat, W., Situmorang, M. y Sitorus, M. (2020). Developing innovative chemistry laboratory workbook integrated with project-based learning and character-based chemistry. International Journal of Instruction, 13(3), 895–908. https://doi.org/10.29333/iji.2020.13359a
Olelewe, C. J., Doherty, F. V., Orji, C. T. y Aneyo, I. (2021). Effects of innovative pedagogy integration in electrical installation and maintenance works in Enugu and Lagos states technical colleges. International Journal of Electrical Engineering Education. https://doi.org/10.1177/0020720921997051
Organización para la Cooperación y el Desarrollo Económicos. OECD. (2006). Assessing scientific, reading and mathematical literacy : a framework for PISA 2006. (1st ed. ).
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ Publishing Group Vol. 372. https://doi.org/10.1136/bmj.n71
Park, W. y Song, J. (2018). Goethe’s Conception of “Experiment as Mediator” and Implications for Practical Work in School Science. Science and Education, 27(1–2), 39–61. https://doi.org/10.1007/s11191-018-9965-z
Ping, I. L., Halim, L. y Osman, K. (2019). The Effects of Explicit Scientific Argumentation Instruction through Practical Work on Science Process Skills. Jurnal Penelitian Dan Pembelajaran IPA, 5(2), 112. https://doi.org/10.30870/jppi.v5i2.5931
Rayistan, M. G., Borodina, M. A., Denisova, O. I., Bogachev, Y. S. y Sekerin, V. D. (2020). The effectiveness of using virtual laboratory workshops in online education of students studying the discipline “inorganic chemistry.” Periodico Tche Quimica, 17(36), 934–948. https://doi.org/10.52571/ptq.v17.n36.2020.949_periodico36_pgs_934_948.pdf
Röllke, K. y Großmann, N. (2022). Predictors of Students’ Intrinsic Motivation in a Biotechnological Out-of-School Student Lab. Frontiers in Education, 7(March), 1–10. https://doi.org/10.3389/feduc.2022.859802
Rusek, M., Beneš, P. y Carroll, J. (2018). Unexpected Discovery: A Guided-Inquiry Experiment on the Reaction Kinetics of Zinc with Sulfuric Acid. Journal of Chemical Education, 95(6), 1018–1021. https://doi.org/10.1021/acs.jchemed.7b00110
Shana, Z. y Abulibdeh, E. S. (2020). Science practical work and its impact on students’ science achievement. Journal of Technology and Science Education, 10(2), 199–215. https://doi.org/10.3926/JOTSE.888
Steger, F., Nitsche, A., Arbesmeier, A., Brade, K. D., Schweiger, H. G. y Belski, I. (2020). Teaching Battery Basics in Laboratories: Hands-On Versus Simulated Experiments. IEEE Transactions on Education, 63(3), 198–208. https://doi.org/10.1109/TE.2020.2970554
Sutiani, A., Situmorang, M. y Silalahi, A. (2021). Implementation of an Inquiry Learning Model with Science Literacy to Improve Student Critical Thinking Skills. International Journal of Instruction, 14(2), 117–138. https://doi.org/10.29333/iji.2021.1428a
Tomažič, I., Hummel, E., Schrenk, M., Rupnik, T. y Randler, C. (2020). Cognitive and affective outcomes of teaching about poisonous and venomous animals. Journal of Biological Education, 54(1), 63–76. https://doi.org/10.1080/00219266.2018.1546757
Valiente, D., Rodríguez, F., Ferrer, J. C., Alonso, J. L. y Fernández de Ávila, S. (2020). Enhancing practical skills in the electronics classroom with portable labs. [Conference: 2020 XIV Congreso de Tecnología, Aprendizaje y Enseñanza de la Electrónica (XIV Technologies Applied to Electronics Teaching Conference) (TAEE)]. DOI:10.1109/TAEE46915.2020.9163733
Vlaardingerbroek, B., Taylor, N., Bale, C. y Kennedy, J. (2017). Linking the experiential, affective and cognitive domains in biology education: a case study–microscopy. Journal of Biological Education, 51(2), 144–150. https://doi.org/10.1080/00219266.2016.1177574
Wellhöfer, L. y Lühken, A. (2022). Problem-Based Learning in an Introductory Inorganic Laboratory: Identifying Connections between Learner Motivation and Implementation. Journal of Chemical Education, 99(2), 864–873. https://doi.org/10.1021/acs.jchemed.1c00808
Woithe, J., Müller, A., Schmeling, S. y Kuhn, J. (2022). Motivational outcomes of the science outreach lab S’Cool LAB at CERN: A multilevel analysis. Journal of Research in Science Teaching, November 2021, 930–968. https://doi.org/10.1002/tea.21748
You, K. Y. (2019). Formative assessment practices in undergraduate microwave engineering education. International Journal of Electrical Engineering Education. https://doi.org/10.1177/0020720919881757
Zorrilla, E., Morales, L., Mazzitelli, C. A. y Olivera, A. del C. (2019). Análisis de trabajos prácticos de laboratorio elaborados por futuros docentes de ciencias naturales. Góndola, Enseñanza y Aprendizaje de Las Ciencias, 14(2), 286–302. https://doi.org/10.14483/23464712.13750
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Samuel David Vargas-Neira, Andrés Bernal-Ballén, John Jairo Briceño-Martínez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.